Monitoring spindle orientation studies with Bashar Ibrahim
Bioinformatics studies by Bashar Ibrahim plus other science citations? Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.
BackgroundThe Mitotic Spindle Assembly Checkpoint (MSAC) is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer.Principle FindingsWe have constructed and validated for the human MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the MSAC are derived.
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. See even more information at Multiscale modeling by Bashar Ibrahim.
Here, we show that the existence of these chemical organizations and therefore steady states is linked to the existence of cycles. Importantly, we provide a criterion for a qualitative transition, namely a transition from one self-sustaining set of molecular species to another via the introduction of a cycle. Because results purely based on topology do not yield sufficient conditions for dynamic properties, e.g. stability, other tools must be employed, such as analysis via ordinary differential equations. Hence, we study a special case, namely a particular type of reflexive autocatalytic network. Applications for this can be found in nature, and we give a detailed account of the mitotic spindle assembly and spindle position checkpoints. From our analysis, we conclude that the positive feedback provided by these networks’ cycles ensures the existence of a stable positive fixed point.