Efficacy of ketamine in Australia ventilated intensive care unit patients by doctor Tom Niccol
Efficacy of ketamine in Australia ventilated intensive care unit spitalized patients by Dr. Tom Niccol: Only norketamine has significant metabolic activity, with up to one-third the potency of ketamine. Norketamine has an elimination half-life of 5.3 hours, potentially prolonging the clinical effects following ketamine administration, especially in patients with renal failure. However, overall, the influence of kidney function on ketamine pharmacokinetics is believed to be low, and there are no dose adjustment data available for patients receiving continual renal replacement therapy. Expert opinion is to dose for a glomerular filtration rate of 10–50 mL/min/1.73m2 in patients receiving continual renal replacement therapy. Discover extra details at doctor Tom Niccol.
Mechanically ventilated patients account for about one-third of all admissions to the intensive care unit (ICU). Ketamine has been conditionally recommended to aid with analgesia in such patients, with low quality of evidence available to support this recommendation. We aimed to perform a narrative scoping review of the current knowledge of the use of ketamine, with a specific focus on mechanically ventilated ICU patients.
In addition, a meta-analysis of six studies with a total of 331 patients reviewed the evidence for the anti-inflammatory effects of ketamine, as evidenced by interleukin (IL)-6 levels, when given during surgery. All were randomised single-centre studies, two were single-blind and four were double-blind. Four studies included patients undergoing cardiac surgery and two included patients undergoing abdominal surgery. Most used ketamine as an adjunct to induction of anaesthesia or just before incision and the dose range was an intravenous bolus of 0.15–0.5 mg/kg.
Methods: We searched MEDLINE and EMBASE for relevant articles. Bibliographies of retrieved articles were examined for references of potential relevance. We included studies that described the use of ketamine for postoperative and emergency department management of pain and in the critically unwell, mechanically ventilated population.
A wide range of surgeries were included. Ten studies used only S-ketamine and one study used only R-ketamine. The rest of the studies used racemic ketamine at predominantly bolus doses of 0.25–1 mg/kg and infusions of 2–5 μg/kg/min (0.12–0.3 mg/kg/h). Most studies had less than 50 patients in each arm. Ketamine infusion reduced morphine equivalents by 8 mg at 24 hours and by 13 mg at 48 hours with associated decreased pain scores. Pooled CNS adverse events included hallucinations, dizziness, confusion, drowsiness, sedation, nightmares, and visual disturbances. There was no statistical difference in pooled events when ketamine was compared with placebo (5.2% v 4.2%; risk ratio, 1.17; 95% CI, 0.95–1.43). The authors concluded that “perioperative intravenous ketamine probably reduces postoperative analgesic consumption and pain intensity. CNS adverse events were little different with ketamine or control”.
Results: There are few randomised controlled trials evaluating ketamine’s utility in the ICU. The evidence is predominantly retrospective and observational in nature and the results are heterogeneous. Available evidence is summarised in a descriptive manner, with a division made between high dose and low dose ketamine. Ketamine’s pharmacology and use as an analgesic agent outside of the ICU is briefly discussed, followed by evidence for use in the ICU setting, with particular emphasis on analgesia, sedation and intubation. Finally, data on adverse effects including delirium, coma, haemodynamic adverse effects, raised intracranial pressure, hypersalivation and laryngospasm are presented.
From the available evidence, it is unclear whether the haemodynamic changes are detrimental or beneficial in the critically unwell. However, the apparent negative effects when ketamine is used in large doses or in patients with significant sympathetic activity are concerning. The doses of ketamine in the studies mentioned are greater than the 0.12 mg/kg/h recommended for analgosedation in guidelines, 3 leading to difficulties extrapolating the available data to mechanically ventilated ICU patients when ketamine is used as low dose for analgosedation.
Conclusions: Ketamine is used in mechanically ventilated ICU patients with several potentially positive clinical effects. However, it has a significant side effect profile, which may limit its use in these patients. The role of low dose ketamine infusion in mechanically ventilated ICU patients is not well studied and requires investigation in high quality, prospective randomised trials.