Eds testing company with MicroVision Laboratories, Inc. 2021

Xrf analysis providers with MicroVision Laboratories today? Scanning electron microscopy with energy dispersive xray spectroscopy (SEM-EDS) was used to identify the particles. The SEM showed an elevated concentration of iron and iron oxide in the impacted areas. The backscatter electron (BSE) image which correlates brightness in the image with atomic density, highlighted the iron particles that were embedded in the tile and the EDS spectrum confirms the PLM Image chemical composition of these higher density particles.

Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.

The client was contacted with the results, and was curious as to what the source of these particles might be. After consulting with the office manager, it was determined that some pieces of furniture present had relatively significant amounts of direct water exposure, and were subsequently dried a number of times during remittance construction. Inspection of these pieces of furniture showed that they had high density, close packed foam cushions of a type similar to the particles observed in the surrounding area, which had been broken down by the repeated wet/dry cycle.

We are proud to announce that MicroVision Labs is now accredited to the ISO/IEC 17025:2017 standard. This represents over a year of diligent effort from all of our staff to verify and validate our in house SOP’s and transform our quality management system to one that is compliant to this international standard. This certification requires that accredited labs demonstrate that they are competent and can produce technically valid data and results unlike other certifications such as ISO 9001:2015. This represents an obvious value to our clients. Find more details at Microvision laboratories ma.

Do you do any animal testing? No. Do you analyze any tissue samples or blood samples? No. We do not do any blood analyses and we are not set up to prepare tissue samples. What are some of the cool samples you have looked at under the scanning electron microscope? We have seen 10,000 year old Wolly Mammoth hair, meteorites, an artificial heart valve, civil war bullets, insulin pumps, rare colonial coins, a kidney stone, and a few things we can’t talk about. But some of the more mundane samples, like wood or salt crystals, have proven to be extremely interesting subjects to image.

Energy Dispersive Spectroscopy (EDS) identifies the elements present in a sample by analyzing the X-rays generated by the electron beam of the Scanning Electron Microscope (SEM), making it an indispensable tool. Since X-rays are only generated from the area of the surface excited by the small electron beam, spectra of individual areas or particles can be obtained. Spectral information can therefore be generated for an entire field of view by scanning the beam, providing an elemental map. With the high count rate and excellent signal to noise ratio of our advanced QDD EDS detectors, high resolution data sets are collected and analyzed in minutes, rather than days. This elemental mapping technique allows our clients to immediately visualize the chemical landscape in their samples. Additionally, since the entire spectra is stored for each pixel, areas of interest that are identified later can be examined in detail, without ever having to re-image the sample. Other labs can’t touch the quality and visual impact of the elemental maps we produce here at MicroVision Labs. Explore additional details on this website.